The best NLP papers of 2015
The best NLP papers of 2015 include "Effective Approaches to Attention-based Neural Machine Translation", "Neural Machine Translation of Rare Words with Subword Units", "Character-level Convolutional Networks for Text Classification", "VQA: Visual Question Answering", and "A large annotated corpus for learning natural language inference". These papers have made significant contributions to the field of NLP, introducing new techniques and models for machine translation, text classification, and language inference.
1. Effective Approaches to Attention-based Neural Machine Translation
7 581 citations
An attentional mechanism has lately been used to improve neural machine translation (NMT) by selectively focusing on parts of the source sentence during translation. However, there has been little work exploring useful architectures for attention-based NMT. This paper examines two simple and effective classes of attentional mechanism: a global approach which always attends to all source words and a local one that only looks at a subset of source words at a time. We demonstrate the effectiveness of both approaches over the WMT translation tasks between English and German in both directions. With local attention, we achieve a significant gain of 5.0 BLEU points over non-attentional systems which already incorporate known techniques such as dropout. Our ensemble model using different attention architectures has established a new state-of-the-art result in the WMT'15 English to German translation task with 25.9 BLEU points, an improvement of 1.0 BLEU points over the existing best system backed by NMT and an n-gram reranker.
2. Neural Machine Translation of Rare Words with Subword Units
6 947 citations
Neural machine translation (NMT) models typically operate with a fixed vocabulary, but translation is an open-vocabulary problem. Previous work addresses the translation of out-of-vocabulary words by backing off to a dictionary. In this paper, we introduce a simpler and more effective approach, making the NMT model capable of open-vocabulary translation by encoding rare and unknown words as sequences of subword units. This is based on the intuition that various word classes are translatable via smaller units than words, for instance names (via character copying or transliteration), compounds (via compositional translation), and cognates and loanwords (via phonological and morphological transformations). We discuss the suitability of different word segmentation techniques, including simple character n-gram models and a segmentation based on the byte pair encoding compression algorithm, and empirically show that subword models improve over a back-off dictionary baseline for the WMT 15 translation tasks English-German and English-Russian by 1.1 and 1.3 BLEU, respectively.
3. Character-level Convolutional Networks for Text Classification
5 361 citations
This article offers an empirical exploration on the use of character-level convolutional networks (ConvNets) for text classification. We constructed several large-scale datasets to show that character-level convolutional networks could achieve state-of-the-art or competitive results. Comparisons are offered against traditional models such as bag of words, n-grams and their TFIDF variants, and deep learning models such as word-based ConvNets and recurrent neural networks.
4. VQA: Visual Question Answering
4 675 citations
We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ~0.25M images, ~0.76M questions, and ~10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vqa).
5. A large annotated corpus for learning natural language inference
3 890 citations
Understanding entailment and contradiction is fundamental to understanding natural language, and inference about entailment and contradiction is a valuable testing ground for the development of semantic representations. However, machine learning research in this area has been dramatically limited by the lack of large-scale resources. To address this, we introduce the Stanford Natural Language Inference corpus, a new, freely available collection of labeled sentence pairs, written by humans doing a novel grounded task based on image captioning. At 570K pairs, it is two orders of magnitude larger than all other resources of its type. This increase in scale allows lexicalized classifiers to outperform some sophisticated existing entailment models, and it allows a neural network-based model to perform competitively on natural language inference benchmarks for the first time.
6. Bidirectional LSTM-CRF Models for Sequence Tagging
3 642 citations
In this paper, we propose a variety of Long Short-Term Memory (LSTM) based models for sequence tagging. These models include LSTM networks, bidirectional LSTM (BI-LSTM) networks, LSTM with a Conditional Random Field (CRF) layer (LSTM-CRF) and bidirectional LSTM with a CRF layer (BI-LSTM-CRF). Our work is the first to apply a bidirectional LSTM CRF (denoted as BI-LSTM-CRF) model to NLP benchmark sequence tagging data sets. We show that the BI-LSTM-CRF model can efficiently use both past and future input features thanks to a bidirectional LSTM component. It can also use sentence level tag information thanks to a CRF layer. The BI-LSTM-CRF model can produce state of the art (or close to) accuracy on POS, chunking and NER data sets. In addition, it is robust and has less dependence on word embedding as compared to previous observations.
7. Teaching Machines to Read and Comprehend
3 299 citations
Teaching machines to read natural language documents remains an elusive challenge. Machine reading systems can be tested on their ability to answer questions posed on the contents of documents that they have seen, but until now large scale training and test datasets have been missing for this type of evaluation. In this work we define a new methodology that resolves this bottleneck and provides large scale supervised reading comprehension data. This allows us to develop a class of attention based deep neural networks that learn to read real documents and answer complex questions with minimal prior knowledge of language structure.
8. Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
3 010 citations
Because of their superior ability to preserve sequence information over time, Long Short-Term Memory (LSTM) networks, a type of recurrent neural network with a more complex computational unit, have obtained strong results on a variety of sequence modeling tasks. The only underlying LSTM structure that has been explored so far is a linear chain. However, natural language exhibits syntactic properties that would naturally combine words to phrases. We introduce the Tree-LSTM, a generalization of LSTMs to tree-structured network topologies. Tree-LSTMs outperform all existing systems and strong LSTM baselines on two tasks: predicting the semantic relatedness of two sentences (SemEval 2014, Task 1) and sentiment classification (Stanford Sentiment Treebank).
9. Deep Speech 2: End-to-End Speech Recognition in English and Mandarin
2 801 citations
We show that an end-to-end deep learning approach can be used to recognize either English or Mandarin Chinese speech--two vastly different languages. Because it replaces entire pipelines of hand-engineered components with neural networks, end-to-end learning allows us to handle a diverse variety of speech including noisy environments, accents and different languages. Key to our approach is our application of HPC techniques, resulting in a 7x speedup over our previous system. Because of this efficiency, experiments that previously took weeks now run in days. This enables us to iterate more quickly to identify superior architectures and algorithms. As a result, in several cases, our system is competitive with the transcription of human workers when benchmarked on standard datasets. Finally, using a technique called Batch Dispatch with GPUs in the data center, we show that our system can be inexpensively deployed in an online setting, delivering low latency when serving users at scale.
10. A Neural Attention Model for Abstractive Sentence Summarization
2 591 citations
Summarization based on text extraction is inherently limited, but generation-style abstractive methods have proven challenging to build. In this work, we propose a fully data-driven approach to abstractive sentence summarization. Our method utilizes a local attention-based model that generates each word of the summary conditioned on the input sentence. While the model is structurally simple, it can easily be trained end-to-end and scales to a large amount of training data. The model shows significant performance gains on the DUC-2004 shared task compared with several strong baselines.
11. Improving Neural Machine Translation Models with Monolingual Data
2 474 citations
Neural Machine Translation (NMT) has obtained state-of-the art performance for several language pairs, while only using parallel data for training. Target-side monolingual data plays an important role in boosting fluency for phrase-based statistical machine translation, and we investigate the use of monolingual data for NMT. In contrast to previous work, which combines NMT models with separately trained language models, we note that encoder-decoder NMT architectures already have the capacity to learn the same information as a language model, and we explore strategies to train with monolingual data without changing the neural network architecture. By pairing monolingual training data with an automatic back-translation, we can treat it as additional parallel training data, and we obtain substantial improvements on the WMT 15 task English<->German (+2.8-3.7 BLEU), and for the low-resourced IWSLT 14 task Turkish->English (+2.1-3.4 BLEU), obtaining new state-of-the-art results. We also show that fine-tuning on in-domain monolingual and parallel data gives substantial improvements for the IWSLT 15 task English->German.
12. Attention-Based Models for Speech Recognition
2 458 citations
Recurrent sequence generators conditioned on input data through an attention mechanism have recently shown very good performance on a range of tasks in- cluding machine translation, handwriting synthesis and image caption gen- eration. We extend the attention-mechanism with features needed for speech recognition. We show that while an adaptation of the model used for machine translation in reaches a competitive 18.7% phoneme error rate (PER) on the TIMIT phoneme recognition task, it can only be applied to utterances which are roughly as long as the ones it was trained on. We offer a qualitative explanation of this failure and propose a novel and generic method of adding location-awareness to the attention mechanism to alleviate this issue. The new method yields a model that is robust to long inputs and achieves 18% PER in single utterances and 20% in 10-times longer (repeated) utterances. Finally, we propose a change to the at- tention mechanism that prevents it from concentrating too much on single frames, which further reduces PER to 17.6% level.
13. Skip-Thought Vectors
2 319 citations
We describe an approach for unsupervised learning of a generic, distributed sentence encoder. Using the continuity of text from books, we train an encoder-decoder model that tries to reconstruct the surrounding sentences of an encoded passage. Sentences that share semantic and syntactic properties are thus mapped to similar vector representations. We next introduce a simple vocabulary expansion method to encode words that were not seen as part of training, allowing us to expand our vocabulary to a million words. After training our model, we extract and evaluate our vectors with linear models on 8 tasks: semantic relatedness, paraphrase detection, image-sentence ranking, question-type classification and 4 benchmark sentiment and subjectivity datasets. The end result is an off-the-shelf encoder that can produce highly generic sentence representations that are robust and perform well in practice. We will make our encoder publicly available.
14. Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books
2 309 citations
Books are a rich source of both fine-grained information, how a character, an object or a scene looks like, as well as high-level semantics, what someone is thinking, feeling and how these states evolve through a story. This paper aims to align books to their movie releases in order to provide rich descriptive explanations for visual content that go semantically far beyond the captions available in current datasets. To align movies and books we exploit a neural sentence embedding that is trained in an unsupervised way from a large corpus of books, as well as a video-text neural embedding for computing similarities between movie clips and sentences in the book. We propose a context-aware CNN to combine information from multiple sources. We demonstrate good quantitative performance for movie/book alignment and show several qualitative examples that showcase the diversity of tasks our model can be used for.
15. Generating Sentences from a Continuous Space
2 202 citations
The standard recurrent neural network language model (RNNLM) generates sentences one word at a time and does not work from an explicit global sentence representation. In this work, we introduce and study an RNN-based variational autoencoder generative model that incorporates distributed latent representations of entire sentences. This factorization allows it to explicitly model holistic properties of sentences such as style, topic, and high-level syntactic features. Samples from the prior over these sentence representations remarkably produce diverse and well-formed sentences through simple deterministic decoding. By examining paths through this latent space, we are able to generate coherent novel sentences that interpolate between known sentences. We present techniques for solving the difficult learning problem presented by this model, demonstrate its effectiveness in imputing missing words, explore many interesting properties of the model's latent sentence space, and present negative results on the use of the model in language modeling.
16. A Diversity-Promoting Objective Function for Neural Conversation Models
2 134 citations
Sequence-to-sequence neural network models for generation of conversational responses tend to generate safe, commonplace responses (e.g., "I don't know") regardless of the input. We suggest that the traditional objective function, i.e., the likelihood of output (response) given input (message) is unsuited to response generation tasks. Instead we propose using Maximum Mutual Information (MMI) as the objective function in neural models. Experimental results demonstrate that the proposed MMI models produce more diverse, interesting, and appropriate responses, yielding substantive gains in BLEU scores on two conversational datasets and in human evaluations.
17. Listen, Attend and Spell
2 106 citations
We present Listen, Attend and Spell (LAS), a neural network that learns to transcribe speech utterances to characters. Unlike traditional DNN-HMM models, this model learns all the components of a speech recognizer jointly. Our system has two components: a listener and a speller. The listener is a pyramidal recurrent network encoder that accepts filter bank spectra as inputs. The speller is an attention-based recurrent network decoder that emits characters as outputs. The network produces character sequences without making any independence assumptions between the characters. This is the key improvement of LAS over previous end-to-end CTC models. On a subset of the Google voice search task, LAS achieves a word error rate (WER) of 14.1% without a dictionary or a language model, and 10.3% with language model rescoring over the top 32 beams. By comparison, the state-of-the-art CLDNN-HMM model achieves a WER of 8.0%.
18. Microsoft COCO Captions: Data Collection and Evaluation Server
2 087 citations
In this paper we describe the Microsoft COCO Caption dataset and evaluation server. When completed, the dataset will contain over one and a half million captions describing over 330,000 images. For the training and validation images, five independent human generated captions will be provided. To ensure consistency in evaluation of automatic caption generation algorithms, an evaluation server is used. The evaluation server receives candidate captions and scores them using several popular metrics, including BLEU, METEOR, ROUGE and CIDEr. Instructions for using the evaluation server are provided.
19. Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks
1 864 citations
Recurrent Neural Networks can be trained to produce sequences of tokens given some input, as exemplified by recent results in machine translation and image captioning. The current approach to training them consists of maximizing the likelihood of each token in the sequence given the current (recurrent) state and the previous token. At inference, the unknown previous token is then replaced by a token generated by the model itself. This discrepancy between training and inference can yield errors that can accumulate quickly along the generated sequence. We propose a curriculum learning strategy to gently change the training process from a fully guided scheme using the true previous token, towards a less guided scheme which mostly uses the generated token instead. Experiments on several sequence prediction tasks show that this approach yields significant improvements. Moreover, it was used successfully in our winning entry to the MSCOCO image captioning challenge, 2015.
20. Stacked Attention Networks for Image Question Answering
1 776 citations
This paper presents stacked attention networks (SANs) that learn to answer natural language questions from images. SANs use semantic representation of a question as query to search for the regions in an image that are related to the answer. We argue that image question answering (QA) often requires multiple steps of reasoning. Thus, we develop a multiple-layer SAN in which we query an image multiple times to infer the answer progressively. Experiments conducted on four image QA data sets demonstrate that the proposed SANs significantly outperform previous state-of-the-art approaches. The visualization of the attention layers illustrates the progress that the SAN locates the relevant visual clues that lead to the answer of the question layer-by-layer.
21. Named Entity Recognition with Bidirectional LSTM-CNNs
1 772 citations
Named entity recognition is a challenging task that has traditionally required large amounts of knowledge in the form of feature engineering and lexicons to achieve high performance. In this paper, we present a novel neural network architecture that automatically detects word- and character-level features using a hybrid bidirectional LSTM and CNN architecture, eliminating the need for most feature engineering. We also propose a novel method of encoding partial lexicon matches in neural networks and compare it to existing approaches. Extensive evaluation shows that, given only tokenized text and publicly available word embeddings, our system is competitive on the CoNLL-2003 dataset and surpasses the previously reported state of the art performance on the OntoNotes 5.0 dataset by 2.13 F1 points. By using two lexicons constructed from publicly-available sources, we establish new state of the art performance with an F1 score of 91.62 on CoNLL-2003 and 86.28 on OntoNotes, surpassing systems that employ heavy feature engineering, proprietary lexicons, and rich entity linking information.
22. A Neural Conversational Model
1 725 citations
Conversational modeling is an important task in natural language understanding and machine intelligence. Although previous approaches exist, they are often restricted to specific domains (e.g., booking an airline ticket) and require hand-crafted rules. In this paper, we present a simple approach for this task which uses the recently proposed sequence to sequence framework. Our model converses by predicting the next sentence given the previous sentence or sentences in a conversation. The strength of our model is that it can be trained end-to-end and thus requires much fewer hand-crafted rules. We find that this straightforward model can generate simple conversations given a large conversational training dataset. Our preliminary results suggest that, despite optimizing the wrong objective function, the model is able to converse well. It is able extract knowledge from both a domain specific dataset, and from a large, noisy, and general domain dataset of movie subtitles. On a domain-specific IT helpdesk dataset, the model can find a solution to a technical problem via conversations. On a noisy open-domain movie transcript dataset, the model can perform simple forms of common sense reasoning. As expected, we also find that the lack of consistency is a common failure mode of our model.
23. Building End-To-End Dialogue Systems Using Generative Hierarchical Neural Network Models
1 706 citations
We investigate the task of building open domain, conversational dialogue systems based on large dialogue corpora using generative models. Generative models produce system responses that are autonomously generated word-by-word, opening up the possibility for realistic, flexible interactions. In support of this goal, we extend the recently proposed hierarchical recurrent encoder-decoder neural network to the dialogue domain, and demonstrate that this model is competitive with state-of-the-art neural language models and back-off n-gram models. We investigate the limitations of this and similar approaches, and show how its performance can be improved by bootstrapping the learning from a larger question-answer pair corpus and from pretrained word embeddings.
24. Flickr30k Entities: Collecting Region-to-Phrase Correspondences for Richer Image-to-Sentence Models
1 672 citations
The Flickr30k dataset has become a standard benchmark for sentence-based image description. This paper presents Flickr30k Entities, which augments the 158k captions from Flickr30k with 244k coreference chains, linking mentions of the same entities across different captions for the same image, and associating them with 276k manually annotated bounding boxes. Such annotations are essential for continued progress in automatic image description and grounded language understanding. They enable us to define a new benchmark for localization of textual entity mentions in an image. We present a strong baseline for this task that combines an image-text embedding, detectors for common objects, a color classifier, and a bias towards selecting larger objects. While our baseline rivals in accuracy more complex state-of-the-art models, we show that its gains cannot be easily parlayed into improvements on such tasks as image-sentence retrieval, thus underlining the limitations of current methods and the need for further research.
25. Character-Aware Neural Language Models
1 614 citations
We describe a simple neural language model that relies only on character-level inputs. Predictions are still made at the word-level. Our model employs a convolutional neural network (CNN) and a highway network over characters, whose output is given to a long short-term memory (LSTM) recurrent neural network language model (RNN-LM). On the English Penn Treebank the model is on par with the existing state-of-the-art despite having 60% fewer parameters. On languages with rich morphology (Arabic, Czech, French, German, Spanish, Russian), the model outperforms word-level/morpheme-level LSTM baselines, again with fewer parameters. The results suggest that on many languages, character inputs are sufficient for language modeling. Analysis of word representations obtained from the character composition part of the model reveals that the model is able to encode, from characters only, both semantic and orthographic information.
26. Sequence Level Training with Recurrent Neural Networks
1 489 citations
Many natural language processing applications use language models to generate text. These models are typically trained to predict the next word in a sequence, given the previous words and some context such as an image. However, at test time the model is expected to generate the entire sequence from scratch. This discrepancy makes generation brittle, as errors may accumulate along the way. We address this issue by proposing a novel sequence level training algorithm that directly optimizes the metric used at test time, such as BLEU or ROUGE. On three different tasks, our approach outperforms several strong baselines for greedy generation. The method is also competitive when these baselines employ beam search, while being several times faster.
27. Convolutional Neural Network Architectures for Matching Natural Language Sentences
1 291 citations
Semantic matching is of central importance to many natural language tasks \cite{bordes2014semantic,RetrievalQA}. A successful matching algorithm needs to adequately model the internal structures of language objects and the interaction between them. As a step toward this goal, we propose convolutional neural network models for matching two sentences, by adapting the convolutional strategy in vision and speech. The proposed models not only nicely represent the hierarchical structures of sentences with their layer-by-layer composition and pooling, but also capture the rich matching patterns at different levels. Our models are rather generic, requiring no prior knowledge on language, and can hence be applied to matching tasks of different nature and in different languages. The empirical study on a variety of matching tasks demonstrates the efficacy of the proposed model on a variety of matching tasks and its superiority to competitor models.
28. Semi-supervised Sequence Learning
1 162 citations
We present two approaches that use unlabeled data to improve sequence learning with recurrent networks. The first approach is to predict what comes next in a sequence, which is a conventional language model in natural language processing. The second approach is to use a sequence autoencoder, which reads the input sequence into a vector and predicts the input sequence again. These two algorithms can be used as a "pretraining" step for a later supervised sequence learning algorithm. In other words, the parameters obtained from the unsupervised step can be used as a starting point for other supervised training models. In our experiments, we find that long short term memory recurrent networks after being pretrained with the two approaches are more stable and generalize better. With pretraining, we are able to train long short term memory recurrent networks up to a few hundred timesteps, thereby achieving strong performance in many text classification tasks, such as IMDB, DBpedia and 20 Newsgroups.
29. Ask Me Anything: Dynamic Memory Networks for Natural Language Processing
1 145 citations
Most tasks in natural language processing can be cast into question answering (QA) problems over language input. We introduce the dynamic memory network (DMN), a neural network architecture which processes input sequences and questions, forms episodic memories, and generates relevant answers. Questions trigger an iterative attention process which allows the model to condition its attention on the inputs and the result of previous iterations. These results are then reasoned over in a hierarchical recurrent sequence model to generate answers. The DMN can be trained end-to-end and obtains state-of-the-art results on several types of tasks and datasets: question answering (Facebook's bAbI dataset), text classification for sentiment analysis (Stanford Sentiment Treebank) and sequence modeling for part-of-speech tagging (WSJ-PTB). The training for these different tasks relies exclusively on trained word vector representations and input-question-answer triplets.
30. Neural Responding Machine for Short-Text Conversation
1 121 citations
We propose Neural Responding Machine (NRM), a neural network-based response generator for Short-Text Conversation. NRM takes the general encoder-decoder framework: it formalizes the generation of response as a decoding process based on the latent representation of the input text, while both encoding and decoding are realized with recurrent neural networks (RNN). The NRM is trained with a large amount of one-round conversation data collected from a microblogging service. Empirical study shows that NRM can generate grammatically correct and content-wise appropriate responses to over 75% of the input text, outperforming state-of-the-arts in the same setting, including retrieval-based and SMT-based models.
31. A Sensitivity Analysis of (and Practitioners' Guide to) Convolutional Neural Networks for Sentence Classification
1 120 citations
Convolutional Neural Networks (CNNs) have recently achieved remarkably strong performance on the practically important task of sentence classification (kim 2014, kalchbrenner 2014, johnson 2014). However, these models require practitioners to specify an exact model architecture and set accompanying hyperparameters, including the filter region size, regularization parameters, and so on. It is currently unknown how sensitive model performance is to changes in these configurations for the task of sentence classification. We thus conduct a sensitivity analysis of one-layer CNNs to explore the effect of architecture components on model performance; our aim is to distinguish between important and comparatively inconsequential design decisions for sentence classification. We focus on one-layer CNNs (to the exclusion of more complex models) due to their comparative simplicity and strong empirical performance, which makes it a modern standard baseline method akin to Support Vector Machine (SVMs) and logistic regression. We derive practical advice from our extensive empirical results for those interested in getting the most out of CNNs for sentence classification in real world settings.
32. Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks
1 100 citations
One long-term goal of machine learning research is to produce methods that are applicable to reasoning and natural language, in particular building an intelligent dialogue agent. To measure progress towards that goal, we argue for the usefulness of a set of proxy tasks that evaluate reading comprehension via question answering. Our tasks measure understanding in several ways: whether a system is able to answer questions via chaining facts, simple induction, deduction and many more. The tasks are designed to be prerequisites for any system that aims to be capable of conversing with a human. We believe many existing learning systems can currently not solve them, and hence our aim is to classify these tasks into skill sets, so that researchers can identify (and then rectify) the failings of their systems. We also extend and improve the recently introduced Memory Networks model, and show it is able to solve some, but not all, of the tasks.
33. End-to-End Attention-based Large Vocabulary Speech Recognition
1 098 citations
Many of the current state-of-the-art Large Vocabulary Continuous Speech Recognition Systems (LVCSR) are hybrids of neural networks and Hidden Markov Models (HMMs). Most of these systems contain separate components that deal with the acoustic modelling, language modelling and sequence decoding. We investigate a more direct approach in which the HMM is replaced with a Recurrent Neural Network (RNN) that performs sequence prediction directly at the character level. Alignment between the input features and the desired character sequence is learned automatically by an attention mechanism built into the RNN. For each predicted character, the attention mechanism scans the input sequence and chooses relevant frames. We propose two methods to speed up this operation: limiting the scan to a subset of most promising frames and pooling over time the information contained in neighboring frames, thereby reducing source sequence length. Integrating an n-gram language model into the decoding process yields recognition accuracies similar to other HMM-free RNN-based approaches.
34. Generation and Comprehension of Unambiguous Object Descriptions
1 074 citations
We propose a method that can generate an unambiguous description (known as a referring expression) of a specific object or region in an image, and which can also comprehend or interpret such an expression to infer which object is being described. We show that our method outperforms previous methods that generate descriptions of objects without taking into account other potentially ambiguous objects in the scene. Our model is inspired by recent successes of deep learning methods for image captioning, but while image captioning is difficult to evaluate, our task allows for easy objective evaluation. We also present a new large-scale dataset for referring expressions, based on MS-COCO. We have released the dataset and a toolbox for visualization and evaluation, see https://github.com/mjhucla/Google_Refexp_toolbox
35. Visualizing and Understanding Recurrent Networks
1 057 citations
Recurrent Neural Networks (RNNs), and specifically a variant with Long Short-Term Memory (LSTM), are enjoying renewed interest as a result of successful applications in a wide range of machine learning problems that involve sequential data. However, while LSTMs provide exceptional results in practice, the source of their performance and their limitations remain rather poorly understood. Using character-level language models as an interpretable testbed, we aim to bridge this gap by providing an analysis of their representations, predictions and error types. In particular, our experiments reveal the existence of interpretable cells that keep track of long-range dependencies such as line lengths, quotes and brackets. Moreover, our comparative analysis with finite horizon n-gram models traces the source of the LSTM improvements to long-range structural dependencies. Finally, we provide analysis of the remaining errors and suggests areas for further study.
36. A Primer on Neural Network Models for Natural Language Processing
1 046 citations
Over the past few years, neural networks have re-emerged as powerful machine-learning models, yielding state-of-the-art results in fields such as image recognition and speech processing. More recently, neural network models started to be applied also to textual natural language signals, again with very promising results. This tutorial surveys neural network models from the perspective of natural language processing research, in an attempt to bring natural-language researchers up to speed with the neural techniques. The tutorial covers input encoding for natural language tasks, feed-forward networks, convolutional networks, recurrent networks and recursive networks, as well as the computation graph abstraction for automatic gradient computation.
37. Describing Videos by Exploiting Temporal Structure
1 037 citations
Recent progress in using recurrent neural networks (RNNs) for image description has motivated the exploration of their application for video description. However, while images are static, working with videos requires modeling their dynamic temporal structure and then properly integrating that information into a natural language description. In this context, we propose an approach that successfully takes into account both the local and global temporal structure of videos to produce descriptions. First, our approach incorporates a spatial temporal 3-D convolutional neural network (3-D CNN) representation of the short temporal dynamics. The 3-D CNN representation is trained on video action recognition tasks, so as to produce a representation that is tuned to human motion and behavior. Second we propose a temporal attention mechanism that allows to go beyond local temporal modeling and learns to automatically select the most relevant temporal segments given the text-generating RNN. Our approach exceeds the current state-of-art for both BLEU and METEOR metrics on the Youtube2Text dataset. We also present results on a new, larger and more challenging dataset of paired video and natural language descriptions.
38. Neural Module Networks
993 citations
Visual question answering is fundamentally compositional in nature---a question like "where is the dog?" shares substructure with questions like "what color is the dog?" and "where is the cat?" This paper seeks to simultaneously exploit the representational capacity of deep networks and the compositional linguistic structure of questions. We describe a procedure for constructing and learning *neural module networks*, which compose collections of jointly-trained neural "modules" into deep networks for question answering. Our approach decomposes questions into their linguistic substructures, and uses these structures to dynamically instantiate modular networks (with reusable components for recognizing dogs, classifying colors, etc.). The resulting compound networks are jointly trained. We evaluate our approach on two challenging datasets for visual question answering, achieving state-of-the-art results on both the VQA natural image dataset and a new dataset of complex questions about abstract shapes.
39. Semantically Conditioned LSTM-based Natural Language Generation for Spoken Dialogue Systems
916 citations
Natural language generation (NLG) is a critical component of spoken dialogue and it has a significant impact both on usability and perceived quality. Most NLG systems in common use employ rules and heuristics and tend to generate rigid and stylised responses without the natural variation of human language. They are also not easily scaled to systems covering multiple domains and languages. This paper presents a statistical language generator based on a semantically controlled Long Short-term Memory (LSTM) structure. The LSTM generator can learn from unaligned data by jointly optimising sentence planning and surface realisation using a simple cross entropy training criterion, and language variation can be easily achieved by sampling from output candidates. With fewer heuristics, an objective evaluation in two differing test domains showed the proposed method improved performance compared to previous methods. Human judges scored the LSTM system higher on informativeness and naturalness and overall preferred it to the other systems.
40. ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs
913 citations
How to model a pair of sentences is a critical issue in many NLP tasks such as answer selection (AS), paraphrase identification (PI) and textual entailment (TE). Most prior work (i) deals with one individual task by fine-tuning a specific system; (ii) models each sentence's representation separately, rarely considering the impact of the other sentence; or (iii) relies fully on manually designed, task-specific linguistic features. This work presents a general Attention Based Convolutional Neural Network (ABCNN) for modeling a pair of sentences. We make three contributions. (i) ABCNN can be applied to a wide variety of tasks that require modeling of sentence pairs. (ii) We propose three attention schemes that integrate mutual influence between sentences into CNN; thus, the representation of each sentence takes into consideration its counterpart. These interdependent sentence pair representations are more powerful than isolated sentence representations. (iii) ABCNN achieves state-of-the-art performance on AS, PI and TE tasks.
41. The Ubuntu Dialogue Corpus: A Large Dataset for Research in Unstructured Multi-Turn Dialogue Systems
906 citations
This paper introduces the Ubuntu Dialogue Corpus, a dataset containing almost 1 million multi-turn dialogues, with a total of over 7 million utterances and 100 million words. This provides a unique resource for research into building dialogue managers based on neural language models that can make use of large amounts of unlabeled data. The dataset has both the multi-turn property of conversations in the Dialog State Tracking Challenge datasets, and the unstructured nature of interactions from microblog services such as Twitter. We also describe two neural learning architectures suitable for analyzing this dataset, and provide benchmark performance on the task of selecting the best next response.
42. A Neural Network Approach to Context-Sensitive Generation of Conversational Responses
902 citations
We present a novel response generation system that can be trained end to end on large quantities of unstructured Twitter conversations. A neural network architecture is used to address sparsity issues that arise when integrating contextual information into classic statistical models, allowing the system to take into account previous dialog utterances. Our dynamic-context generative models show consistent gains over both context-sensitive and non-context-sensitive Machine Translation and Information Retrieval baselines.
43. Order Matters: Sequence to sequence for sets
882 citations
Sequences have become first class citizens in supervised learning thanks to the resurgence of recurrent neural networks. Many complex tasks that require mapping from or to a sequence of observations can now be formulated with the sequence-to-sequence (seq2seq) framework which employs the chain rule to efficiently represent the joint probability of sequences. In many cases, however, variable sized inputs and/or outputs might not be naturally expressed as sequences. For instance, it is not clear how to input a set of numbers into a model where the task is to sort them; similarly, we do not know how to organize outputs when they correspond to random variables and the task is to model their unknown joint probability. In this paper, we first show using various examples that the order in which we organize input and/or output data matters significantly when learning an underlying model. We then discuss an extension of the seq2seq framework that goes beyond sequences and handles input sets in a principled way. In addition, we propose a loss which, by searching over possible orders during training, deals with the lack of structure of output sets. We show empirical evidence of our claims regarding ordering, and on the modifications to the seq2seq framework on benchmark language modeling and parsing tasks, as well as two artificial tasks -- sorting numbers and estimating the joint probability of unknown graphical models.
44. Effective LSTMs for Target-Dependent Sentiment Classification
815 citations
Target-dependent sentiment classification remains a challenge: modeling the semantic relatedness of a target with its context words in a sentence. Different context words have different influences on determining the sentiment polarity of a sentence towards the target. Therefore, it is desirable to integrate the connections between target word and context words when building a learning system. In this paper, we develop two target dependent long short-term memory (LSTM) models, where target information is automatically taken into account. We evaluate our methods on a benchmark dataset from Twitter. Empirical results show that modeling sentence representation with standard LSTM does not perform well. Incorporating target information into LSTM can significantly boost the classification accuracy. The target-dependent LSTM models achieve state-of-the-art performances without using syntactic parser or external sentiment lexicons.
45. A C-LSTM Neural Network for Text Classification
810 citations
Neural network models have been demonstrated to be capable of achieving remarkable performance in sentence and document modeling. Convolutional neural network (CNN) and recurrent neural network (RNN) are two mainstream architectures for such modeling tasks, which adopt totally different ways of understanding natural languages. In this work, we combine the strengths of both architectures and propose a novel and unified model called C-LSTM for sentence representation and text classification. C-LSTM utilizes CNN to extract a sequence of higher-level phrase representations, and are fed into a long short-term memory recurrent neural network (LSTM) to obtain the sentence representation. C-LSTM is able to capture both local features of phrases as well as global and temporal sentence semantics. We evaluate the proposed architecture on sentiment classification and question classification tasks. The experimental results show that the C-LSTM outperforms both CNN and LSTM and can achieve excellent performance on these tasks.
46. Deep Sentence Embedding Using Long Short-Term Memory Networks: Analysis and Application to Information Retrieval
794 citations
This paper develops a model that addresses sentence embedding, a hot topic in current natural language processing research, using recurrent neural networks with Long Short-Term Memory (LSTM) cells. Due to its ability to capture long term memory, the LSTM-RNN accumulates increasingly richer information as it goes through the sentence, and when it reaches the last word, the hidden layer of the network provides a semantic representation of the whole sentence. In this paper, the LSTM-RNN is trained in a weakly supervised manner on user click-through data logged by a commercial web search engine. Visualization and analysis are performed to understand how the embedding process works. The model is found to automatically attenuate the unimportant words and detects the salient keywords in the sentence. Furthermore, these detected keywords are found to automatically activate different cells of the LSTM-RNN, where words belonging to a similar topic activate the same cell. As a semantic representation of the sentence, the embedding vector can be used in many different applications. These automatic keyword detection and topic allocation abilities enabled by the LSTM-RNN allow the network to perform document retrieval, a difficult language processing task, where the similarity between the query and documents can be measured by the distance between their corresponding sentence embedding vectors computed by the LSTM-RNN. On a web search task, the LSTM-RNN embedding is shown to significantly outperform several existing state of the art methods. We emphasize that the proposed model generates sentence embedding vectors that are specially useful for web document retrieval tasks. A comparison with a well known general sentence embedding method, the Paragraph Vector, is performed. The results show that the proposed method in this paper significantly outperforms it for web document retrieval task.
47. Transition-Based Dependency Parsing with Stack Long Short-Term Memory
790 citations
We propose a technique for learning representations of parser states in transition-based dependency parsers. Our primary innovation is a new control structure for sequence-to-sequence neural networks---the stack LSTM. Like the conventional stack data structures used in transition-based parsing, elements can be pushed to or popped from the top of the stack in constant time, but, in addition, an LSTM maintains a continuous space embedding of the stack contents. This lets us formulate an efficient parsing model that captures three facets of a parser's state: (i) unbounded look-ahead into the buffer of incoming words, (ii) the complete history of actions taken by the parser, and (iii) the complete contents of the stack of partially built tree fragments, including their internal structures. Standard backpropagation techniques are used for training and yield state-of-the-art parsing performance.
48. Multi-task Sequence to Sequence Learning
778 citations
Sequence to sequence learning has recently emerged as a new paradigm in supervised learning. To date, most of its applications focused on only one task and not much work explored this framework for multiple tasks. This paper examines three multi-task learning (MTL) settings for sequence to sequence models: (a) the oneto-many setting - where the encoder is shared between several tasks such as machine translation and syntactic parsing, (b) the many-to-one setting - useful when only the decoder can be shared, as in the case of translation and image caption generation, and (c) the many-to-many setting - where multiple encoders and decoders are shared, which is the case with unsupervised objectives and translation. Our results show that training on a small amount of parsing and image caption data can improve the translation quality between English and German by up to 1.5 BLEU points over strong single-task baselines on the WMT benchmarks. Furthermore, we have established a new state-of-the-art result in constituent parsing with 93.0 F1. Lastly, we reveal interesting properties of the two unsupervised learning objectives, autoencoder and skip-thought, in the MTL context: autoencoder helps less in terms of perplexities but more on BLEU scores compared to skip-thought.
49. Sentiment of Emojis
752 citations
There is a new generation of emoticons, called emojis, that is increasingly being used in mobile communications and social media. In the past two years, over ten billion emojis were used on Twitter. Emojis are Unicode graphic symbols, used as a shorthand to express concepts and ideas. In contrast to the small number of well-known emoticons that carry clear emotional contents, there are hundreds of emojis. But what are their emotional contents? We provide the first emoji sentiment lexicon, called the Emoji Sentiment Ranking, and draw a sentiment map of the 751 most frequently used emojis. The sentiment of the emojis is computed from the sentiment of the tweets in which they occur. We engaged 83 human annotators to label over 1.6 million tweets in 13 European languages by the sentiment polarity (negative, neutral, or positive). About 4% of the annotated tweets contain emojis. The sentiment analysis of the emojis allows us to draw several interesting conclusions. It turns out that most of the emojis are positive, especially the most popular ones. The sentiment distribution of the tweets with and without emojis is significantly different. The inter-annotator agreement on the tweets with emojis is higher. Emojis tend to occur at the end of the tweets, and their sentiment polarity increases with the distance. We observe no significant differences in the emoji rankings between the 13 languages and the Emoji Sentiment Ranking. Consequently, we propose our Emoji Sentiment Ranking as a European language-independent resource for automated sentiment analysis. Finally, the paper provides a formalization of sentiment and a novel visualization in the form of a sentiment bar.
50. PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks
746 citations
Unsupervised text embedding methods, such as Skip-gram and Paragraph Vector, have been attracting increasing attention due to their simplicity, scalability, and effectiveness. However, comparing to sophisticated deep learning architectures such as convolutional neural networks, these methods usually yield inferior results when applied to particular machine learning tasks. One possible reason is that these text embedding methods learn the representation of text in a fully unsupervised way, without leveraging the labeled information available for the task. Although the low dimensional representations learned are applicable to many different tasks, they are not particularly tuned for any task. In this paper, we fill this gap by proposing a semi-supervised representation learning method for text data, which we call the \textit{predictive text embedding} (PTE). Predictive text embedding utilizes both labeled and unlabeled data to learn the embedding of text. The labeled information and different levels of word co-occurrence information are first represented as a large-scale heterogeneous text network, which is then embedded into a low dimensional space through a principled and efficient algorithm. This low dimensional embedding not only preserves the semantic closeness of words and documents, but also has a strong predictive power for the particular task. Compared to recent supervised approaches based on convolutional neural networks, predictive text embedding is comparable or more effective, much more efficient, and has fewer parameters to tune.
51. Learning Deep Structure-Preserving Image-Text Embeddings
743 citations
This paper proposes a method for learning joint embeddings of images and text using a two-branch neural network with multiple layers of linear projections followed by nonlinearities. The network is trained using a large margin objective that combines cross-view ranking constraints with within-view neighborhood structure preservation constraints inspired by metric learning literature. Extensive experiments show that our approach gains significant improvements in accuracy for image-to-text and text-to-image retrieval. Our method achieves new state-of-the-art results on the Flickr30K and MSCOCO image-sentence datasets and shows promise on the new task of phrase localization on the Flickr30K Entities dataset.
52. Reasoning about Entailment with Neural Attention
738 citations
While most approaches to automatically recognizing entailment relations have used classifiers employing hand engineered features derived from complex natural language processing pipelines, in practice their performance has been only slightly better than bag-of-word pair classifiers using only lexical similarity. The only attempt so far to build an end-to-end differentiable neural network for entailment failed to outperform such a simple similarity classifier. In this paper, we propose a neural model that reads two sentences to determine entailment using long short-term memory units. We extend this model with a word-by-word neural attention mechanism that encourages reasoning over entailments of pairs of words and phrases. Furthermore, we present a qualitative analysis of attention weights produced by this model, demonstrating such reasoning capabilities. On a large entailment dataset this model outperforms the previous best neural model and a classifier with engineered features by a substantial margin. It is the first generic end-to-end differentiable system that achieves state-of-the-art accuracy on a textual entailment dataset.
53. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering
734 citations
We address the problem of Visual Question Answering (VQA), which requires joint image and language understanding to answer a question about a given photograph. Recent approaches have applied deep image captioning methods based on convolutional-recurrent networks to this problem, but have failed to model spatial inference. To remedy this, we propose a model we call the Spatial Memory Network and apply it to the VQA task. Memory networks are recurrent neural networks with an explicit attention mechanism that selects certain parts of the information stored in memory. Our Spatial Memory Network stores neuron activations from different spatial regions of the image in its memory, and uses the question to choose relevant regions for computing the answer, a process of which constitutes a single "hop" in the network. We propose a novel spatial attention architecture that aligns words with image patches in the first hop, and obtain improved results by adding a second attention hop which considers the whole question to choose visual evidence based on the results of the first hop. To better understand the inference process learned by the network, we design synthetic questions that specifically require spatial inference and visualize the attention weights. We evaluate our model on two published visual question answering datasets, DAQUAR [1] and VQA [2], and obtain improved results compared to a strong deep baseline model (iBOWIMG) which concatenates image and question features to predict the answer [3].
54. EESEN: End-to-End Speech Recognition using Deep RNN Models and WFST-based Decoding
728 citations
The performance of automatic speech recognition (ASR) has improved tremendously due to the application of deep neural networks (DNNs). Despite this progress, building a new ASR system remains a challenging task, requiring various resources, multiple training stages and significant expertise. This paper presents our Eesen framework which drastically simplifies the existing pipeline to build state-of-the-art ASR systems. Acoustic modeling in Eesen involves learning a single recurrent neural network (RNN) predicting context-independent targets (phonemes or characters). To remove the need for pre-generated frame labels, we adopt the connectionist temporal classification (CTC) objective function to infer the alignments between speech and label sequences. A distinctive feature of Eesen is a generalized decoding approach based on weighted finite-state transducers (WFSTs), which enables the efficient incorporation of lexicons and language models into CTC decoding. Experiments show that compared with the standard hybrid DNN systems, Eesen achieves comparable word error rates (WERs), while at the same time speeding up decoding significantly.
55. MovieQA: Understanding Stories in Movies through Question-Answering
664 citations
We introduce the MovieQA dataset which aims to evaluate automatic story comprehension from both video and text. The dataset consists of 14,944 questions about 408 movies with high semantic diversity. The questions range from simpler "Who" did "What" to "Whom", to "Why" and "How" certain events occurred. Each question comes with a set of five possible answers; a correct one and four deceiving answers provided by human annotators. Our dataset is unique in that it contains multiple sources of information -- video clips, plots, subtitles, scripts, and DVS. We analyze our data through various statistics and methods. We further extend existing QA techniques to show that question-answering with such open-ended semantics is hard. We make this data set public along with an evaluation benchmark to encourage inspiring work in this challenging domain.
56. Large-scale Simple Question Answering with Memory Networks
663 citations
Training large-scale question answering systems is complicated because training sources usually cover a small portion of the range of possible questions. This paper studies the impact of multitask and transfer learning for simple question answering; a setting for which the reasoning required to answer is quite easy, as long as one can retrieve the correct evidence given a question, which can be difficult in large-scale conditions. To this end, we introduce a new dataset of 100k questions that we use in conjunction with existing benchmarks. We conduct our study within the framework of Memory Networks (Weston et al., 2015) because this perspective allows us to eventually scale up to more complex reasoning, and show that Memory Networks can be successfully trained to achieve excellent performance.
57. Exploring Models and Data for Image Question Answering
660 citations
This work aims to address the problem of image-based question-answering (QA) with new models and datasets. In our work, we propose to use neural networks and visual semantic embeddings, without intermediate stages such as object detection and image segmentation, to predict answers to simple questions about images. Our model performs 1.8 times better than the only published results on an existing image QA dataset. We also present a question generation algorithm that converts image descriptions, which are widely available, into QA form. We used this algorithm to produce an order-of-magnitude larger dataset, with more evenly distributed answers. A suite of baseline results on this new dataset are also presented.
58. Visualizing and Understanding Neural Models in NLP
653 citations
While neural networks have been successfully applied to many NLP tasks the resulting vector-based models are very difficult to interpret. For example it's not clear how they achieve {\em compositionality}, building sentence meaning from the meanings of words and phrases. In this paper we describe four strategies for visualizing compositionality in neural models for NLP, inspired by similar work in computer vision. We first plot unit values to visualize compositionality of negation, intensification, and concessive clauses, allow us to see well-known markedness asymmetries in negation. We then introduce three simple and straightforward methods for visualizing a unit's {\em salience}, the amount it contributes to the final composed meaning: (1) gradient back-propagation, (2) the variance of a token from the average word node, (3) LSTM-style gates that measure information flow. We test our methods on sentiment using simple recurrent nets and LSTMs. Our general-purpose methods may have wide applications for understanding compositionality and other semantic properties of deep networks , and also shed light on why LSTMs outperform simple recurrent nets,
59. Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation
633 citations
We introduce a model for constructing vector representations of words by composing characters using bidirectional LSTMs. Relative to traditional word representation models that have independent vectors for each word type, our model requires only a single vector per character type and a fixed set of parameters for the compositional model. Despite the compactness of this model and, more importantly, the arbitrary nature of the form-function relationship in language, our "composed" word representations yield state-of-the-art results in language modeling and part-of-speech tagging. Benefits over traditional baselines are particularly pronounced in morphologically rich languages (e.g., Turkish).
60. Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Path
631 citations
Relation classification is an important research arena in the field of natural language processing (NLP). In this paper, we present SDP-LSTM, a novel neural network to classify the relation of two entities in a sentence. Our neural architecture leverages the shortest dependency path (SDP) between two entities; multichannel recurrent neural networks, with long short term memory (LSTM) units, pick up heterogeneous information along the SDP. Our proposed model has several distinct features: (1) The shortest dependency paths retain most relevant information (to relation classification), while eliminating irrelevant words in the sentence. (2) The multichannel LSTM networks allow effective information integration from heterogeneous sources over the dependency paths. (3) A customized dropout strategy regularizes the neural network to alleviate overfitting. We test our model on the SemEval 2010 relation classification task, and achieve an $F_1$-score of 83.7\%, higher than competing methods in the literature.
61. Compositional Semantic Parsing on Semi-Structured Tables
627 citations
Two important aspects of semantic parsing for question answering are the breadth of the knowledge source and the depth of logical compositionality. While existing work trades off one aspect for another, this paper simultaneously makes progress on both fronts through a new task: answering complex questions on semi-structured tables using question-answer pairs as supervision. The central challenge arises from two compounding factors: the broader domain results in an open-ended set of relations, and the deeper compositionality results in a combinatorial explosion in the space of logical forms. We propose a logical-form driven parsing algorithm guided by strong typing constraints and show that it obtains significant improvements over natural baselines. For evaluation, we created a new dataset of 22,033 complex questions on Wikipedia tables, which is made publicly available.
62. The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations
609 citations
We introduce a new test of how well language models capture meaning in children's books. Unlike standard language modelling benchmarks, it distinguishes the task of predicting syntactic function words from that of predicting lower-frequency words, which carry greater semantic content. We compare a range of state-of-the-art models, each with a different way of encoding what has been previously read. We show that models which store explicit representations of long-term contexts outperform state-of-the-art neural language models at predicting semantic content words, although this advantage is not observed for syntactic function words. Interestingly, we find that the amount of text encoded in a single memory representation is highly influential to the performance: there is a sweet-spot, not too big and not too small, between single words and full sentences that allows the most meaningful information in a text to be effectively retained and recalled. Further, the attention over such window-based memories can be trained effectively through self-supervision. We then assess the generality of this principle by applying it to the CNN QA benchmark, which involves identifying named entities in paraphrased summaries of news articles, and achieve state-of-the-art performance.
63. A Hierarchical Neural Autoencoder for Paragraphs and Documents
595 citations
Natural language generation of coherent long texts like paragraphs or longer documents is a challenging problem for recurrent networks models. In this paper, we explore an important step toward this generation task: training an LSTM (Long-short term memory) auto-encoder to preserve and reconstruct multi-sentence paragraphs. We introduce an LSTM model that hierarchically builds an embedding for a paragraph from embeddings for sentences and words, then decodes this embedding to reconstruct the original paragraph. We evaluate the reconstructed paragraph using standard metrics like ROUGE and Entity Grid, showing that neural models are able to encode texts in a way that preserve syntactic, semantic, and discourse coherence. While only a first step toward generating coherent text units from neural models, our work has the potential to significantly impact natural language generation and summarization\footnote{Code for the three models described in this paper can be found at www.stanford.edu/~jiweil/ .
64. Modeling Relation Paths for Representation Learning of Knowledge Bases
586 citations
Representation learning of knowledge bases (KBs) aims to embed both entities and relations into a low-dimensional space. Most existing methods only consider direct relations in representation learning. We argue that multiple-step relation paths also contain rich inference patterns between entities, and propose a path-based representation learning model. This model considers relation paths as translations between entities for representation learning, and addresses two key challenges: (1) Since not all relation paths are reliable, we design a path-constraint resource allocation algorithm to measure the reliability of relation paths. (2) We represent relation paths via semantic composition of relation embeddings. Experimental results on real-world datasets show that, as compared with baselines, our model achieves significant and consistent improvements on knowledge base completion and relation extraction from text.
65. Ask Your Neurons: A Neural-based Approach to Answering Questions about Images
578 citations
We address a question answering task on real-world images that is set up as a Visual Turing Test. By combining latest advances in image representation and natural language processing, we propose Neural-Image-QA, an end-to-end formulation to this problem for which all parts are trained jointly. In contrast to previous efforts, we are facing a multi-modal problem where the language output (answer) is conditioned on visual and natural language input (image and question). Our approach Neural-Image-QA doubles the performance of the previous best approach on this problem. We provide additional insights into the problem by analyzing how much information is contained only in the language part for which we provide a new human baseline. To study human consensus, which is related to the ambiguities inherent in this challenging task, we propose two novel metrics and collect additional answers which extends the original DAQUAR dataset to DAQUAR-Consensus.
66. Neural Variational Inference for Text Processing
575 citations
Recent advances in neural variational inference have spawned a renaissance in deep latent variable models. In this paper we introduce a generic variational inference framework for generative and conditional models of text. While traditional variational methods derive an analytic approximation for the intractable distributions over latent variables, here we construct an inference network conditioned on the discrete text input to provide the variational distribution. We validate this framework on two very different text modelling applications, generative document modelling and supervised question answering. Our neural variational document model combines a continuous stochastic document representation with a bag-of-words generative model and achieves the lowest reported perplexities on two standard test corpora. The neural answer selection model employs a stochastic representation layer within an attention mechanism to extract the semantics between a question and answer pair. On two question answering benchmarks this model exceeds all previous published benchmarks.
67. Classifying Relations by Ranking with Convolutional Neural Networks
557 citations
Relation classification is an important semantic processing task for which state-ofthe-art systems still rely on costly handcrafted features. In this work we tackle the relation classification task using a convolutional neural network that performs classification by ranking (CR-CNN). We propose a new pairwise ranking loss function that makes it easy to reduce the impact of artificial classes. We perform experiments using the the SemEval-2010 Task 8 dataset, which is designed for the task of classifying the relationship between two nominals marked in a sentence. Using CRCNN, we outperform the state-of-the-art for this dataset and achieve a F1 of 84.1 without using any costly handcrafted features. Additionally, our experimental results show that: (1) our approach is more effective than CNN followed by a softmax classifier; (2) omitting the representation of the artificial class Other improves both precision and recall; and (3) using only word embeddings as input features is enough to achieve state-of-the-art results if we consider only the text between the two target nominals.
68. On Using Monolingual Corpora in Neural Machine Translation
544 citations
Recent work on end-to-end neural network-based architectures for machine translation has shown promising results for En-Fr and En-De translation. Arguably, one of the major factors behind this success has been the availability of high quality parallel corpora. In this work, we investigate how to leverage abundant monolingual corpora for neural machine translation. Compared to a phrase-based and hierarchical baseline, we obtain up to $1.96$ BLEU improvement on the low-resource language pair Turkish-English, and $1.59$ BLEU on the focused domain task of Chinese-English chat messages. While our method was initially targeted toward such tasks with less parallel data, we show that it also extends to high resource languages such as Cs-En and De-En where we obtain an improvement of $0.39$ and $0.47$ BLEU scores over the neural machine translation baselines, respectively.
69. Towards Universal Paraphrastic Sentence Embeddings
542 citations
We consider the problem of learning general-purpose, paraphrastic sentence embeddings based on supervision from the Paraphrase Database (Ganitkevitch et al., 2013). We compare six compositional architectures, evaluating them on annotated textual similarity datasets drawn both from the same distribution as the training data and from a wide range of other domains. We find that the most complex architectures, such as long short-term memory (LSTM) recurrent neural networks, perform best on the in-domain data. However, in out-of-domain scenarios, simple architectures such as word averaging vastly outperform LSTMs. Our simplest averaging model is even competitive with systems tuned for the particular tasks while also being extremely efficient and easy to use. In order to better understand how these architectures compare, we conduct further experiments on three supervised NLP tasks: sentence similarity, entailment, and sentiment classification. We again find that the word averaging models perform well for sentence similarity and entailment, outperforming LSTMs. However, on sentiment classification, we find that the LSTM performs very strongly-even recording new state-of-the-art performance on the Stanford Sentiment Treebank. We then demonstrate how to combine our pretrained sentence embeddings with these supervised tasks, using them both as a prior and as a black box feature extractor. This leads to performance rivaling the state of the art on the SICK similarity and entailment tasks. We release all of our resources to the research community with the hope that they can serve as the new baseline for further work on universal sentence embeddings.
70. Text Understanding from Scratch
540 citations
This article demontrates that we can apply deep learning to text understanding from character-level inputs all the way up to abstract text concepts, using temporal convolutional networks (ConvNets). We apply ConvNets to various large-scale datasets, including ontology classification, sentiment analysis, and text categorization. We show that temporal ConvNets can achieve astonishing performance without the knowledge of words, phrases, sentences and any other syntactic or semantic structures with regards to a human language. Evidence shows that our models can work for both English and Chinese.
71. Natural Language Object Retrieval
530 citations
In this paper, we address the task of natural language object retrieval, to localize a target object within a given image based on a natural language query of the object. Natural language object retrieval differs from text-based image retrieval task as it involves spatial information about objects within the scene and global scene context. To address this issue, we propose a novel Spatial Context Recurrent ConvNet (SCRC) model as scoring function on candidate boxes for object retrieval, integrating spatial configurations and global scene-level contextual information into the network. Our model processes query text, local image descriptors, spatial configurations and global context features through a recurrent network, outputs the probability of the query text conditioned on each candidate box as a score for the box, and can transfer visual-linguistic knowledge from image captioning domain to our task. Experimental results demonstrate that our method effectively utilizes both local and global information, outperforming previous baseline methods significantly on different datasets and scenarios, and can exploit large scale vision and language datasets for knowledge transfer.
72. Order-Embeddings of Images and Language
519 citations
Hypernymy, textual entailment, and image captioning can be seen as special cases of a single visual-semantic hierarchy over words, sentences, and images. In this paper we advocate for explicitly modeling the partial order structure of this hierarchy. Towards this goal, we introduce a general method for learning ordered representations, and show how it can be applied to a variety of tasks involving images and language. We show that the resulting representations improve performance over current approaches for hypernym prediction and image-caption retrieval.
73. Twitter Sentiment Analysis: Lexicon Method, Machine Learning Method and Their Combination
484 citations
This paper covers the two approaches for sentiment analysis: i) lexicon based method; ii) machine learning method. We describe several techniques to implement these approaches and discuss how they can be adopted for sentiment classification of Twitter messages. We present a comparative study of different lexicon combinations and show that enhancing sentiment lexicons with emoticons, abbreviations and social-media slang expressions increases the accuracy of lexicon-based classification for Twitter. We discuss the importance of feature generation and feature selection processes for machine learning sentiment classification. To quantify the performance of the main sentiment analysis methods over Twitter we run these algorithms on a benchmark Twitter dataset from the SemEval-2013 competition, task 2-B. The results show that machine learning method based on SVM and Naive Bayes classifiers outperforms the lexicon method. We present a new ensemble method that uses a lexicon based sentiment score as input feature for the machine learning approach. The combined method proved to produce more precise classifications. We also show that employing a cost-sensitive classifier for highly unbalanced datasets yields an improvement of sentiment classification performance up to 7%.
74. Are You Talking to a Machine? Dataset and Methods for Multilingual Image Question Answering
474 citations
In this paper, we present the mQA model, which is able to answer questions about the content of an image. The answer can be a sentence, a phrase or a single word. Our model contains four components: a Long Short-Term Memory (LSTM) to extract the question representation, a Convolutional Neural Network (CNN) to extract the visual representation, an LSTM for storing the linguistic context in an answer, and a fusing component to combine the information from the first three components and generate the answer. We construct a Freestyle Multilingual Image Question Answering (FM-IQA) dataset to train and evaluate our mQA model. It contains over 150,000 images and 310,000 freestyle Chinese question-answer pairs and their English translations. The quality of the generated answers of our mQA model on this dataset is evaluated by human judges through a Turing Test. Specifically, we mix the answers provided by humans and our model. The human judges need to distinguish our model from the human. They will also provide a score (i.e. 0, 1, 2, the larger the better) indicating the quality of the answer. We propose strategies to monitor the quality of this evaluation process. The experiments show that in 64.7% of cases, the human judges cannot distinguish our model from humans. The average score is 1.454 (1.918 for human). The details of this work, including the FM-IQA dataset, can be found on the project page: http://idl.baidu.com/FM-IQA.html
75. Grounding of Textual Phrases in Images by Reconstruction
468 citations
Grounding (i.e. localizing) arbitrary, free-form textual phrases in visual content is a challenging problem with many applications for human-computer interaction and image-text reference resolution. Few datasets provide the ground truth spatial localization of phrases, thus it is desirable to learn from data with no or little grounding supervision. We propose a novel approach which learns grounding by reconstructing a given phrase using an attention mechanism, which can be either latent or optimized directly. During training our approach encodes the phrase using a recurrent network language model and then learns to attend to the relevant image region in order to reconstruct the input phrase. At test time, the correct attention, i.e., the grounding, is evaluated. If grounding supervision is available it can be directly applied via a loss over the attention mechanism. We demonstrate the effectiveness of our approach on the Flickr 30k Entities and ReferItGame datasets with different levels of supervision, ranging from no supervision over partial supervision to full supervision. Our supervised variant improves by a large margin over the state-of-the-art on both datasets.
76. A Dataset for Movie Description
454 citations
Descriptive video service (DVS) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their peers. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed DVS, which is temporally aligned to full length HD movies. In addition we also collected the aligned movie scripts which have been used in prior work and compare the two different sources of descriptions. In total the Movie Description dataset contains a parallel corpus of over 54,000 sentences and video snippets from 72 HD movies. We characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing DVS to scripts, we find that DVS is far more visual and describes precisely what is shown rather than what should happen according to the scripts created prior to movie production.
77. Efficient Non-parametric Estimation of Multiple Embeddings per Word in Vector Space
454 citations
There is rising interest in vector-space word embeddings and their use in NLP, especially given recent methods for their fast estimation at very large scale. Nearly all this work, however, assumes a single vector per word type ignoring polysemy and thus jeopardizing their usefulness for downstream tasks. We present an extension to the Skip-gram model that efficiently learns multiple embeddings per word type. It differs from recent related work by jointly performing word sense discrimination and embedding learning, by non-parametrically estimating the number of senses per word type, and by its efficiency and scalability. We present new state-of-the-art results in the word similarity in context task and demonstrate its scalability by training with one machine on a corpus of nearly 1 billion tokens in less than 6 hours.
78. Minimum Risk Training for Neural Machine Translation
444 citations
We propose minimum risk training for end-to-end neural machine translation. Unlike conventional maximum likelihood estimation, minimum risk training is capable of optimizing model parameters directly with respect to arbitrary evaluation metrics, which are not necessarily differentiable. Experiments show that our approach achieves significant improvements over maximum likelihood estimation on a state-of-the-art neural machine translation system across various languages pairs. Transparent to architectures, our approach can be applied to more neural networks and potentially benefit more NLP tasks.
79. Fast and Accurate Recurrent Neural Network Acoustic Models for Speech Recognition
422 citations
We have recently shown that deep Long Short-Term Memory (LSTM) recurrent neural networks (RNNs) outperform feed forward deep neural networks (DNNs) as acoustic models for speech recognition. More recently, we have shown that the performance of sequence trained context dependent (CD) hidden Markov model (HMM) acoustic models using such LSTM RNNs can be equaled by sequence trained phone models initialized with connectionist temporal classification (CTC). In this paper, we present techniques that further improve performance of LSTM RNN acoustic models for large vocabulary speech recognition. We show that frame stacking and reduced frame rate lead to more accurate models and faster decoding. CD phone modeling leads to further improvements. We also present initial results for LSTM RNN models outputting words directly.
80. LSTM-based Deep Learning Models for Non-factoid Answer Selection
422 citations
In this paper, we apply a general deep learning (DL) framework for the answer selection task, which does not depend on manually defined features or linguistic tools. The basic framework is to build the embeddings of questions and answers based on bidirectional long short-term memory (biLSTM) models, and measure their closeness by cosine similarity. We further extend this basic model in two directions. One direction is to define a more composite representation for questions and answers by combining convolutional neural network with the basic framework. The other direction is to utilize a simple but efficient attention mechanism in order to generate the answer representation according to the question context. Several variations of models are provided. The models are examined by two datasets, including TREC-QA and InsuranceQA. Experimental results demonstrate that the proposed models substantially outperform several strong baselines.
81. Learning Natural Language Inference with LSTM
419 citations
Natural language inference (NLI) is a fundamentally important task in natural language processing that has many applications. The recently released Stanford Natural Language Inference (SNLI) corpus has made it possible to develop and evaluate learning-centered methods such as deep neural networks for natural language inference (NLI). In this paper, we propose a special long short-term memory (LSTM) architecture for NLI. Our model builds on top of a recently proposed neural attention model for NLI but is based on a significantly different idea. Instead of deriving sentence embeddings for the premise and the hypothesis to be used for classification, our solution uses a match-LSTM to perform word-by-word matching of the hypothesis with the premise. This LSTM is able to place more emphasis on important word-level matching results. In particular, we observe that this LSTM remembers important mismatches that are critical for predicting the contradiction or the neutral relationship label. On the SNLI corpus, our model achieves an accuracy of 86.1%, outperforming the state of the art.
82. Describing Multimedia Content using Attention-based Encoder--Decoder Networks
391 citations
Whereas deep neural networks were first mostly used for classification tasks, they are rapidly expanding in the realm of structured output problems, where the observed target is composed of multiple random variables that have a rich joint distribution, given the input. We focus in this paper on the case where the input also has a rich structure and the input and output structures are somehow related. We describe systems that learn to attend to different places in the input, for each element of the output, for a variety of tasks: machine translation, image caption generation, video clip description and speech recognition. All these systems are based on a shared set of building blocks: gated recurrent neural networks and convolutional neural networks, along with trained attention mechanisms. We report on experimental results with these systems, showing impressively good performance and the advantage of the attention mechanism.
83. Applying Deep Learning to Answer Selection: A Study and An Open Task
371 citations
We apply a general deep learning framework to address the non-factoid question answering task. Our approach does not rely on any linguistic tools and can be applied to different languages or domains. Various architectures are presented and compared. We create and release a QA corpus and setup a new QA task in the insurance domain. Experimental results demonstrate superior performance compared to the baseline methods and various technologies give further improvements. For this highly challenging task, the top-1 accuracy can reach up to 65.3% on a test set, which indicates a great potential for practical use.
84. Document Embedding with Paragraph Vectors
361 citations
Paragraph Vectors has been recently proposed as an unsupervised method for learning distributed representations for pieces of texts. In their work, the authors showed that the method can learn an embedding of movie review texts which can be leveraged for sentiment analysis. That proof of concept, while encouraging, was rather narrow. Here we consider tasks other than sentiment analysis, provide a more thorough comparison of Paragraph Vectors to other document modelling algorithms such as Latent Dirichlet Allocation, and evaluate performance of the method as we vary the dimensionality of the learned representation. We benchmarked the models on two document similarity data sets, one from Wikipedia, one from arXiv. We observe that the Paragraph Vector method performs significantly better than other methods, and propose a simple improvement to enhance embedding quality. Somewhat surprisingly, we also show that much like word embeddings, vector operations on Paragraph Vectors can perform useful semantic results.
85. Grid Long Short-Term Memory
355 citations
This paper introduces Grid Long Short-Term Memory, a network of LSTM cells arranged in a multidimensional grid that can be applied to vectors, sequences or higher dimensional data such as images. The network differs from existing deep LSTM architectures in that the cells are connected between network layers as well as along the spatiotemporal dimensions of the data. The network provides a unified way of using LSTM for both deep and sequential computation. We apply the model to algorithmic tasks such as 15-digit integer addition and sequence memorization, where it is able to significantly outperform the standard LSTM. We then give results for two empirical tasks. We find that 2D Grid LSTM achieves 1.47 bits per character on the Wikipedia character prediction benchmark, which is state-of-the-art among neural approaches. In addition, we use the Grid LSTM to define a novel two-dimensional translation model, the Reencoder, and show that it outperforms a phrase-based reference system on a Chinese-to-English translation task.
86. Language Understanding for Text-based Games Using Deep Reinforcement Learning
347 citations
In this paper, we consider the task of learning control policies for text-based games. In these games, all interactions in the virtual world are through text and the underlying state is not observed. The resulting language barrier makes such environments challenging for automatic game players. We employ a deep reinforcement learning framework to jointly learn state representations and action policies using game rewards as feedback. This framework enables us to map text descriptions into vector representations that capture the semantics of the game states. We evaluate our approach on two game worlds, comparing against baselines using bag-of-words and bag-of-bigrams for state representations. Our algorithm outperforms the baselines on both worlds demonstrating the importance of learning expressive representations.
87. A Survey and Classification of Controlled Natural Languages
346 citations
What is here called controlled natural language (CNL) has traditionally been given many different names. Especially during the last four decades, a wide variety of such languages have been designed. They are applied to improve communication among humans, to improve translation, or to provide natural and intuitive representations for formal notations. Despite the apparent differences, it seems sensible to put all these languages under the same umbrella. To bring order to the variety of languages, a general classification scheme is presented here. A comprehensive survey of existing English-based CNLs is given, listing and describing 100 languages from 1930 until today. Classification of these languages reveals that they form a single scattered cloud filling the conceptual space between natural languages such as English on the one end and formal languages such as propositional logic on the other. The goal of this article is to provide a common terminology and a common model for CNL, to contribute to the understanding of their general nature, to provide a starting point for researchers interested in the area, and to help developers to make design decisions.
88. Traversing Knowledge Graphs in Vector Space
345 citations
Path queries on a knowledge graph can be used to answer compositional questions such as "What languages are spoken by people living in Lisbon?". However, knowledge graphs often have missing facts (edges) which disrupts path queries. Recent models for knowledge base completion impute missing facts by embedding knowledge graphs in vector spaces. We show that these models can be recursively applied to answer path queries, but that they suffer from cascading errors. This motivates a new "compositional" training objective, which dramatically improves all models' ability to answer path queries, in some cases more than doubling accuracy. On a standard knowledge base completion task, we also demonstrate that compositional training acts as a novel form of structural regularization, reliably improving performance across all base models (reducing errors by up to 43%) and achieving new state-of-the-art results.
89. Natural Language Inference by Tree-Based Convolution and Heuristic Matching
336 citations
In this paper, we propose the TBCNN-pair model to recognize entailment and contradiction between two sentences. In our model, a tree-based convolutional neural network (TBCNN) captures sentence-level semantics; then heuristic matching layers like concatenation, element-wise product/difference combine the information in individual sentences. Experimental results show that our model outperforms existing sentence encoding-based approaches by a large margin.
90. Relation Classification via Recurrent Neural Network
334 citations
Deep learning has gained much success in sentence-level relation classification. For example, convolutional neural networks (CNN) have delivered competitive performance without much effort on feature engineering as the conventional pattern-based methods. Thus a lot of works have been produced based on CNN structures. However, a key issue that has not been well addressed by the CNN-based method is the lack of capability to learn temporal features, especially long-distance dependency between nominal pairs. In this paper, we propose a simple framework based on recurrent neural networks (RNN) and compare it with CNN-based model. To show the limitation of popular used SemEval-2010 Task 8 dataset, we introduce another dataset refined from MIMLRE(Angeli et al., 2014). Experiments on two different datasets strongly indicates that the RNN-based model can deliver better performance on relation classification, and it is particularly capable of learning long-distance relation patterns. This makes it suitable for real-world applications where complicated expressions are often involved.
91. Boosting Named Entity Recognition with Neural Character Embeddings
332 citations
Most state-of-the-art named entity recognition (NER) systems rely on handcrafted features and on the output of other NLP tasks such as part-of-speech (POS) tagging and text chunking. In this work we propose a language-independent NER system that uses automatically learned features only. Our approach is based on the CharWNN deep neural network, which uses word-level and character-level representations (embeddings) to perform sequential classification. We perform an extensive number of experiments using two annotated corpora in two different languages: HAREM I corpus, which contains texts in Portuguese; and the SPA CoNLL-2002 corpus, which contains texts in Spanish. Our experimental results shade light on the contribution of neural character embeddings for NER. Moreover, we demonstrate that the same neural network which has been successfully applied to POS tagging can also achieve state-of-the-art results for language-independet NER, using the same hyperparameters, and without any handcrafted features. For the HAREM I corpus, CharWNN outperforms the state-of-the-art system by 7.9 points in the F1-score for the total scenario (ten NE classes), and by 7.2 points in the F1 for the selective scenario (five NE classes).
92. How to Generate a Good Word Embedding?
331 citations
We analyze three critical components of word embedding training: the model, the corpus, and the training parameters. We systematize existing neural-network-based word embedding algorithms and compare them using the same corpus. We evaluate each word embedding in three ways: analyzing its semantic properties, using it as a feature for supervised tasks and using it to initialize neural networks. We also provide several simple guidelines for training word embeddings. First, we discover that corpus domain is more important than corpus size. We recommend choosing a corpus in a suitable domain for the desired task, after that, using a larger corpus yields better results. Second, we find that faster models provide sufficient performance in most cases, and more complex models can be used if the training corpus is sufficiently large. Third, the early stopping metric for iterating should rely on the development set of the desired task rather than the validation loss of training embedding.
93. A Deep Architecture for Semantic Matching with Multiple Positional Sentence Representations
330 citations
Matching natural language sentences is central for many applications such as information retrieval and question answering. Existing deep models rely on a single sentence representation or multiple granularity representations for matching. However, such methods cannot well capture the contextualized local information in the matching process. To tackle this problem, we present a new deep architecture to match two sentences with multiple positional sentence representations. Specifically, each positional sentence representation is a sentence representation at this position, generated by a bidirectional long short term memory (Bi-LSTM). The matching score is finally produced by aggregating interactions between these different positional sentence representations, through $k$-Max pooling and a multi-layer perceptron. Our model has several advantages: (1) By using Bi-LSTM, rich context of the whole sentence is leveraged to capture the contextualized local information in each positional sentence representation; (2) By matching with multiple positional sentence representations, it is flexible to aggregate different important contextualized local information in a sentence to support the matching; (3) Experiments on different tasks such as question answering and sentence completion demonstrate the superiority of our model.
94. A Survey of Available Corpora for Building Data-Driven Dialogue Systems
329 citations
During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.
95. Multimodal Convolutional Neural Networks for Matching Image and Sentence
328 citations
In this paper, we propose multimodal convolutional neural networks (m-CNNs) for matching image and sentence. Our m-CNN provides an end-to-end framework with convolutional architectures to exploit image representation, word composition, and the matching relations between the two modalities. More specifically, it consists of one image CNN encoding the image content, and one matching CNN learning the joint representation of image and sentence. The matching CNN composes words to different semantic fragments and learns the inter-modal relations between image and the composed fragments at different levels, thus fully exploit the matching relations between image and sentence. Experimental results on benchmark databases of bidirectional image and sentence retrieval demonstrate that the proposed m-CNNs can effectively capture the information necessary for image and sentence matching. Specifically, our proposed m-CNNs for bidirectional image and sentence retrieval on Flickr30K and Microsoft COCO databases achieve the state-of-the-art performances.
96. Image Question Answering using Convolutional Neural Network with Dynamic Parameter Prediction
320 citations
We tackle image question answering (ImageQA) problem by learning a convolutional neural network (CNN) with a dynamic parameter layer whose weights are determined adaptively based on questions. For the adaptive parameter prediction, we employ a separate parameter prediction network, which consists of gated recurrent unit (GRU) taking a question as its input and a fully-connected layer generating a set of candidate weights as its output. However, it is challenging to construct a parameter prediction network for a large number of parameters in the fully-connected dynamic parameter layer of the CNN. We reduce the complexity of this problem by incorporating a hashing technique, where the candidate weights given by the parameter prediction network are selected using a predefined hash function to determine individual weights in the dynamic parameter layer. The proposed network---joint network with the CNN for ImageQA and the parameter prediction network---is trained end-to-end through back-propagation, where its weights are initialized using a pre-trained CNN and GRU. The proposed algorithm illustrates the state-of-the-art performance on all available public ImageQA benchmarks.
97. Yin and Yang: Balancing and Answering Binary Visual Questions
319 citations
The complex compositional structure of language makes problems at the intersection of vision and language challenging. But language also provides a strong prior that can result in good superficial performance, without the underlying models truly understanding the visual content. This can hinder progress in pushing state of art in the computer vision aspects of multi-modal AI. In this paper, we address binary Visual Question Answering (VQA) on abstract scenes. We formulate this problem as visual verification of concepts inquired in the questions. Specifically, we convert the question to a tuple that concisely summarizes the visual concept to be detected in the image. If the concept can be found in the image, the answer to the question is "yes", and otherwise "no". Abstract scenes play two roles (1) They allow us to focus on the high-level semantics of the VQA task as opposed to the low-level recognition problems, and perhaps more importantly, (2) They provide us the modality to balance the dataset such that language priors are controlled, and the role of vision is essential. In particular, we collect fine-grained pairs of scenes for every question, such that the answer to the question is "yes" for one scene, and "no" for the other for the exact same question. Indeed, language priors alone do not perform better than chance on our balanced dataset. Moreover, our proposed approach matches the performance of a state-of-the-art VQA approach on the unbalanced dataset, and outperforms it on the balanced dataset.
98. Simple Baseline for Visual Question Answering
311 citations
We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset [2], it shows comparable performance to many recent approaches using recurrent neural networks. To explore the strength and weakness of the trained model, we also provide an interactive web demo and open-source code. .
99. LCSTS: A Large Scale Chinese Short Text Summarization Dataset
310 citations
Automatic text summarization is widely regarded as the highly difficult problem, partially because of the lack of large text summarization data set. Due to the great challenge of constructing the large scale summaries for full text, in this paper, we introduce a large corpus of Chinese short text summarization dataset constructed from the Chinese microblogging website Sina Weibo, which is released to the public {http://icrc.hitsz.edu.cn/Article/show/139.html}. This corpus consists of over 2 million real Chinese short texts with short summaries given by the author of each text. We also manually tagged the relevance of 10,666 short summaries with their corresponding short texts. Based on the corpus, we introduce recurrent neural network for the summary generation and achieve promising results, which not only shows the usefulness of the proposed corpus for short text summarization research, but also provides a baseline for further research on this topic.
100. Improved Transition-Based Parsing by Modeling Characters instead of Words with LSTMs
296 citations
We present extensions to a continuous-state dependency parsing method that makes it applicable to morphologically rich languages. Starting with a high-performance transition-based parser that uses long short-term memory (LSTM) recurrent neural networks to learn representations of the parser state, we replace lookup-based word representations with representations constructed from the orthographic representations of the words, also using LSTMs. This allows statistical sharing across word forms that are similar on the surface. Experiments for morphologically rich languages show that the parsing model benefits from incorporating the character-based encodings of words.